Unified derivation of evolution equations

نویسنده

  • Hsiang-nan Li
چکیده

We derive the evolution equations of parton distribution functions appropriate in different kinematic regions in a unified and simple way using the resummation technique. They include the Dokshitzer-Gribov-LipatovAltarelli-Parisi equation for large momentum transfer Q, the Balitskii-FadinKuraev-Lipatov equation for a small Bjorken variable x, and the CiafaloniCatani-Fiorani-Marchesini equation which embodies the above two equations. The relation among these equations is explored, and possible applications of our approach are proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

رفتار سالیتونی در مدلهای ناپایدار باروکیلینیک

  Here we concern ouraelves with the derivation of a system of evolution equations for slowly varying amplitude of a baroclinic wave packet. The self-induced transparency, Sine-Gordon, and nonlinear Schrodinger equations, all of which possess soliton solutions, each arise for different inviscid limits. The presence of viscosity, however, alters the form of the evolution equations and changes th...

متن کامل

Analytic Solution of Fuzzy Second Order Differential Equations under H-Derivation

In this paper, the solution of linear second order equations with fuzzy initialvalues are investigated. The analytic general solutions of them using a rstsolution is founded. The parametric form of fuzzy numbers to solve the secondorder equations is applied. The solutions are searched in four cases. Finallythe example is got to illustrate more and the solutions are shown in gures forfour cases.

متن کامل

Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics

2 Derivation of the Hartree Equation in the Mean Field Limit 5 2.1 Mean Field Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Derivation of the Hartree Equation for Bounded Potentials . . . . . . . . . . . . . . . 7 2.3 Another Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Derivation of the Hartree Equation fo...

متن کامل

Observable Divergence Theorem: Evolution Equations for Inviscid Regularization of Shocks and Turbulence∗

The divergence theorem of Gauss plays a central role in the derivation of the governing differential equations in fluid dynamics, electrodynamics, gravitational fields, and optics. Many of these phenomena, particularly shocks and turbulence in fluids, are multi-scale in nature and prone to continuous generation of high wave-number modes or small scales. In practical applications, however, one i...

متن کامل

Proof of Renormalizability and Derivation of Dynamical Equations for Relativistic Composite Particle Systems and Reactions in Unified Field Models

I n any quantum field theory of mat ter , in part icular in quarkand subquark models, bound states have to be treated. I n coupling theories corresponding bound state equations are derived b y the Gel l -Mann-Low procedure f rom the Greenfunction hierarchy. D u e to certain presuppositions neither the derivation of such generalized Bethe-Salpeter equations nor the normal izat ion of their ampli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998